
16 - Sorting Algorithms
Joseph Afework
CS 241

Dept. of Computer Science
California Polytechnic State University, Pomona, CA

Agenda

● Intro
● Bubble Sort
● Selection Sort
● Insertion Sort
● Merge Sort
● Quick Sort
● Heap Sort
● Performance

Reading Assignment

● Read Chapter 28
○ Chapter 28 (Read about: Sorting Algorithms)

Sorting Algorithms

A sorting algorithm is an algorithm that arranges elements of a list in a specific
order.

● Common orders are numerical order and lexicographical order.

Classification

Sorting Algorithms are generally classified by the following properties:

● Computational complexity
● Memory Usage
● Use of Recursion
● Stability
● Adaptability

Stability

Stable sorting algorithms maintain the relative order of records with equal keys.

Ex. (4, 2) (3, 7) (3, 1) (5, 6)

In this case, two different results are possible, one which maintains the relative
order of records with equal keys, and one which does not:

(3, 7) (3, 1) (4, 2) (5, 6)
(3, 1) (3, 7) (4, 2) (5, 6)

Bubble Sort

Bubble sort: comparison

1. Repeatedly step through the list to be sorted, comparing each pair of
adjacent items…

2. Swap if they are in the wrong order…..
3. Repeat until no swaps are needed... (list is sorted)

Bubble Sort Contd.

procedure bubbleSort(A : list of sortable items) defined as:
do

 swapped := false
for each i in 0 to length(A) - 1 inclusive do:

 if A[i] > A[i+1] then
 swap(A[i], A[i+1])
 swapped := true
 end if

end for
 while swapped
end procedure

Runtime: Worst Case O(n2)
Runtime: Best Case O(n)

Bubble Sort Example

Selection Sort

Selection Sort: selection

1. Find the minimum value in the list
2. Swap it with the value in the first position
3. Repeat the steps above for the remainder of the list (starting at the

second position and advancing each time)

Selection Sort Contd.

void selectionSort(int[] a) {
for (int i = 0; i < a.length - 1; i++) {

int min = i;
for (int j = i + 1; j < a.length; j++) {

 if (a[j] < a[min]) {
 min = j;
 }
 }

if (i != min) {
 int swap = a[i];
 a[i] = a[min];
 a[min] = swap;
 }
 }
}

Runtime: Worst Case O(n2)
Runtime: Best Case O(n2)

Selection Sort Example

Insertion Sort

Insertion Sort: insertion

1. Every iteration of insertion sort removes an element from the input data,
inserting it into the correct position in the already-sorted list, until no input
elements remain.

2. The choice of which element to remove from the input is arbitrary, and can
be made using almost any choice algorithm.

3. Sorting is typically done in-place.

Insertion Sort Contd.

insertionSort(array A){
for i := 1 to length[A] - 1{

 value := A[i];
 j := i - 1;

while j >= 0 and A[j] > value
{

 A[j + 1] := A[j];
 j := j - 1;

}
 A[j + 1] := value;

}
}

Runtime: Worst Case O(n2)
Runtime: Best Case O(n)

Insertion Sort Contd.

Merge Sort

Merge Sort: partitions

1. If the array is of length 0 or 1, then it is already sorted.
2. Otherwise:

a. Divide the array into two arrays of about half the size.
b. Sort each array recursively by re-applying merge sort (splitting).
c. Merge the two arrays back into one sorted list (merge).

Merge Sort Contd.

Algorithm MergeSort(A, 0, n-1)
{

MergeSort(A, 0, n/2)
 MergeSort(A, n/2 + 1, n-1)
 MergeTogether(2 arrays above)
}

Runtime: Worst Case O(n log n).. how?
Runtime: Best Case O(n log n)... generally

Recurrence Relation

Merge Sort Example

Merge Sort Example

Quick Sort

Quick Sort: comparison…. divide-conquer

1. Pick an element, called the pivot, from the array.
2. (Partition the array): Move all elements less than pivot, in front of pivot,

move all elements greater than pivot behind in the array.(equal values can
go either way).
a. After this partitioning, the pivot is in its final position (sorted position).

3. Recursively sort the two sub-arrays using quicksort. The base case of the
recursion are arrays of size zero or one, which are always sorted.

Quick Sort Contd.

function quicksort(array)
var list less, greater

 if length(array) <= 1
 return array

select and remove a pivot from array
 for each x in array
 if x <= pivot then append x to less
 else append x to greater
 return concatenate(quicksort(less), pivot,
quicksort(greater))

Worst Case: O(n2)..
Best Case: O(n log n)...

Picking a good pivot element (to start) is critical.

The closer the pivot is near the median of the
array values, the more efficient quicksort is.

Technique: Randomly choose three values from
the array and then use the middle of these three
values as the pivot element.

Heap Sort

1. Build a max heap out of the data set
2. Remove the largest element from the heap (top element) and place it into

the end of the sorted array
3. Restore heap property (reheapify as needed)... just like normal heap value

removal
4. Goto Step 2 until no more elements in heap

Performance

